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 Abstract

The role of the electric field at the toner–carrier interface
must be considered to understand the triboelectric charg-
ing mechanisms of two-component xerographic develop-
ers. The interfacial electric field is the result of the charge
exchanged during repeated contacts between toner particles
and carrier beads. We present a refinement of our previous
model for the interfacial electric field; the new model in-
cludes multiple layers of toner on a carrier bead and treats
the surface charge distribution on each toner particle as dis-
crete, rather than continuous. We find good agreement of the
refined model with the measured dependence of toner
charge-to-mass ratio on toner concentration. Finally, we dis-
cuss the relation between the single fittable parameter, Ao, and
the characteristic energy levels of the component materials.

Introduction

Recently Anderson1 presented a discussion of a surface-
state model of triboelectric charging of two-component elec-
trophotographic developers and compared model
predictions to available experimental measurements, includ-
ing those of Schein2 and the present authors.3 Anderson’s
form of the surface-state model predicts a linear relation-
ship between the inverse of the toner charge-to-mass ratio
(q/m) and the toner concentration. His predicted ratio of
the slope to intercept depends on the surface density of states
of toner and carrier, but becomes independent of the sur-
face density of states in the high-density limit. Anderson’s
review of available experiments suggests that the high-den-
sity limit for the slope-to-intercept ratio agrees with the
data to within about a factor of 4, but that the estimated
magnitude of q/m differs from experiment by about two
orders of magnitude.

In our earlier publication,3 in addition to the data ref-
erenced above, we described a physical model for q/m that
incorporated a microscopic surface-state model for elec-
tric field-dependent contact electrification, combined with
a model that traced how the carrier bead and toner particle
charge changed with developer agitation.

The electric field in the gap at the region of a particu-
lar contact, which we call Eg, is the sum of the fields due to
the contact charge density exchanged during this contact
plus the “external field” from charges outside the region of
contact. This “external field,” which we call the toner–car-
rier interfacial electric field, is from charges exchanged in

previous contacts distributed on the carrier bead, toner par-
ticle, and neighboring toner particles. Our q/m model treats
the effect of having a number of different materials on the
surfaces of both toner and carrier. Schein2 has also empha-
sized the importance of Eg in understanding q/m. In this
study, we refine the model of the toner-carrier interfacial
electric field, examine how this modifies our physical model
for q/m, and compare the predictions to experimental data.
We also show that the magnitude of q/m agrees with the
measured value if factors such as microscopic surface
roughness and the contact probabilities of the component
materials are considered.

Comparisons of our earlier physical model to measure-
ments of the dependence of q/m on toner concentration, C,
show that the value of the parameter Co (the C axis inter-
cept) predicted by the model is about a factor of two larger
than the measured value. This is a large discrepancy and
we were motivated to investigate the problem further. The
parameter Co depends on the value of the electric field at
the toner-carrier interface. In our earlier work, three sim-
plifying assumptions were made concerning the calcula-
tion of the local electrostatic field:

1. The influence of neighboring carrier beads on the
toner-carrier interfacial electric field was not addressed.

2. The effect on the toner–carrier interfacial electric field
due to multiple layers of toner particles on the carrier
bead was neglected. Consequently, the model was lim-
ited to a toner monolayer, whereas most practical sys-
tems involve multilayers.

3. The charge on each toner particle was assumed to be
continuously distributed on the surface and, as a con-
sequence, was represented as a point charge located at
the center of the toner particle. In reality, the charge
on each toner particle is distributed discretely, and pos-
sibly nonuniformly, over the toner particle surface.

The first four sections of this study investigate each of
these effects. The remaining three sections present a mod-
ified model for q/m and compare the modified model with
experimental measurements.

Influence of Neighboring Carrier Beads on
the Interfacial Electric Field

The influence of neighboring carrier beads surrounding a
carrier bead of radius R on the toner-carrier interfacial elec-
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tric field was investigated, using a model for the electrostatic
field in which a charged toner particle of radius r0 is em-
bedded in a spherical cavity between R and R + 2r0. The
surrounding carrier beads are represented by a region hav-
ing uniform dielectric constant, starting at radius R + 2r0

and extending to infinity. The normal electric field at the
surface of the carrier bead represented by the inner dielec-
tric sphere is

         E = −∂φ∂r
r−R

, (1a)

where φ is the potential in the cavity generated by the
charged toner particle. It is convenient to measure the field
in units of q/4π∈oro

2, where q is the charge on the toner
particle. From Eq. 1a, we define a dimensionless function
f(u) related to the normal field at the surface of the carrier
bead to be,

         f (u) = (4π ∈o ro
2 / q)∂φ / ∂r

r=R
, (1b)

where u = cosθ. The magnitude of the field at the point of
contact of the toner particle with the carrier bead is given
by f(1). An expression for f(1) is derived in Appendix A for
the geometry described above, and numerically calculated
values of f(1) are given in Table I. These results show that
the effect of neighboring carrier beads is to reduce the in-
terfacial field slightly, but the effect is less than 10% and
is, therefore, small. This finding provides our rationale for
neglecting this effect in the refined model for the toner–
carrier interfacial electric field.

Table I. Influence of Neighboring Carrier Beads on the
Strength of the Interfacial Electric Field between a Uni-
formly Charged Toner Particle of Radius ro and a Spheri-
cal Dielectric Carrier Bead of Radius R*

Electric field Electric field
   strength,    strength,
 f(1), when  f(1), when

∈1 R/ro     ∈3 = 1    ∈3 = ∈1

  4   3      1.71      1.58
10      1.64      1.54
20      1.62      1.52

10   3      2.00      1.81
10      1.88      1.73
20      1.85      1.71

• The neighboring dielectric carrier beads are represented by a dielectric
region surrounding a cavity of radius R + 2r0 and extending to infinity.
The dielectric constants of the carrier bead, cavity, and surrounding re-
gion are ∈1, ∈2 = 1, and ∈3, respectively.

Multiple Layers of Toner Particles on the
Carrier Bead

We now develop a model for the contribution of the fields
from all the toner particles surrounding the carrier bead to
the toner-carrier interfacial electric field of the toner par-
ticle under study, which we take to be the one at the pole.
Figure 1 illustrates the model geometry. The toner particles
in the layer closest to the carrier surface are represented by
a spherical shell of charge located at R + r0, but open at the

pole to accommodate the particle under study. The toner
particles in the second layer are represented by a second
shell of charge also open at the pole.

The radial position of the second layer of charge de-
pends on how the toner particles pack on the carrier bead
surface. Simple cubic stacking results in a location of R +
3r0; however, particles in the second layer can be staggered
relative to the first layer, resulting in a location R+(1 + 31/2)
r0. We find that the numerical results are not very sensitive
to this assumption. The first layer can accommodate at most
nmono = 4pf R2/r0

2 particles, where pf is the packing factor, of
order 0.5 to 0.6. The remaining n – nmono – n2 particles go
into the second layer. Once the second layer is filled, in
principle a third layer could be populated.

Figure 1. Geometry of the physical model. The right-hand side
shows the assumed locations of toner particles; the left-hand side
represents the electrostatic model.

We treat the pole toner particle uniquely and exclude
it from both of the charged shells. For the first shell, follow-
ing the approach of Ref. 3, this is done by defining a region
at the pole subtended by the angle θ1 and requiring that the
surface integral be equal to n1 – 1 charges:

       2πσ1(R + r0 )2 sinθdθ = (n1 −1)q
θ1

π

∫ (2)

For the first layer, with n1 < nmono, the equivalent surface
charge density is

   σ1 = n1q

4π (R + r0 )2 . (3)

The angular size of the region at the pole is determined by
substituting Eq. 3 into Eq. 2. This provides a relationship
between the size of the region and n1:

     sin2 θ1

2




 = 1

n1
. (4)
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We also exclude from the pole region the n2 particles
in the second layer and assume that the charge n2q is uni-
formly distributed between angle θ2 and π, so that

    2πσ2 (R + 3ro )2 sinθdθ = n2q,
θ2

π
∫ (5)

which gives

     σ2 = n2q

4π (R + 3ro )2
1

cos2 (θ2 / 2)
. (6)

In this case, the equivalent surface charge density depends
weakly on the choice of the angle θ2. We choose θ2 to be
the same as the angle θ1 for a monolayer in the first layer,
defined by sin2(θ1/2) = 1/nmono.

The total interfacial electric field at the pole is the sum
of three electric field contributions: first, the toner particle
at the pole; second, the other toner particles represented by
the two partial shells of charge surrounding the carrier bead;
and third, the charge on the carrier bead. The result is

4π ∈0 E = −q

ro
2 f1(1) −

2πσ1(R + ro )2

ro
2θ1

π
∫ f1 u( )sinθdθ

−
2πσ2 (R + 3ro )2

ro
2θ2

π
∫ f 2 u( )sinθdθ + Q

R2 ,

(7)

where u = cosθ. Noting that du = –sinθdθ, Eq. 7 can be
written

  4πε0 E = − q

r0
2 f1(1) 1− G1 n1( ) − G2 n2( ){ } + Q

R2 , (8)

where

G1 n1( ) = n1

2 f1(1) cos θ1

−1
∫ f1(u)du

G2 n2( ) = n2

2 f1(1) cos θ2

−1
∫ f 2 (u)du.

Equation 8 is similar to the previous model3 but now
has two terms. Here f1(1) is the dimensionless parameter
related to the strength of the interfacial field at the pole due
to the charge of the pole toner particle. The functions f1(u)
and f2(u) are the strength of the interfacial field at the pole
due to the charge in the shells that represent the remaining
(n1 – 1) particles in the first layer and the n2 particles in the
second layer.

An asymptotic expression for the field can be obtained
from Eq. 8. Mathematically, n can be allowed to approach
infinity, in which case mathematically the shells of charge
become continuous at the pole and, as one can verify from
Gauss’s law, no longer contribute to the field at the surface
of the carrier bead. The term 1 – G1(n) – G2(n) in Eq. 8
tends to zero, and therefore –4π∈oro

2E/q ~ nro
2/R2, which

corresponds to the field due only to the carrier bead charge.

Electric Field Near the Surface of a Particle
with a Discrete Surface Charge Distribution

Next we investigate how the electric field near a toner par-
ticle depends on details of the surface charge distribution
on its surface. Hays4 has investigated a related problem re-

garding the effect of patchy surface charge distributions on
the adhesion of toner particles, and he found that the elec-
trostatic force of adhesion can be greatly increased, depend-
ing on the surface charge distribution and the size of the
contact area. We are motivated to examine discrete or patchy
distributions of the surface charge, because the physical
model for q/m deals with the charging dynamics of initially
uncharged toner particles. As the developer is agitated and
collisions occur between toner and carrier, the charge on
the toner particles gradually increases and the surface
distribution becomes patchy. In the patchy regions, there
can be a single charge or several charges. Even in the case
of a toner particle with single charges in each patch distrib-
uted homogeneously over its surface, the size of the re-
gions between charges is surprisingly large. For example,
a toner particle with 5 µm radius charged to 20 µC/gm has
about 6 × 104 charges, and if these are spaced uniformly on
the surface, the angle subtended by two adjacent charges is
about 0.4°. Hence, it is likely that uncharged regions of the
surface of the toner particle will continue to contact the
carrier bead. We will show that a region this size without
charge at the point of contact has an appreciable effect in
reducing the strength of the toner–carrier interfacial field.
Of course, the tonercarrier interfacial electric field is cor-
respondingly increased in regions adjacent to the discrete
charges.

The effect of a patchy surface charge distribution on
the interfacial electric field should be greatest if a region
without charge is located at the point of contact between
the toner particles and carrier beads. We model this situa-
tion by smearing the discrete charges into a continuous shell
of charge everywhere except in a circular region centered
at the point of contact, as shown in Fig. 2. This is a reason-
able model because of the inverse square dependence of
field on distance, combined with the fact that the discrete
charges represented by the continuous shell are located far
from the point of contact. The charge distribution is em-
bedded in a medium with permittivity ∈o.

Isolated Toner Particle
First we examine the field near an isolated toner particle.

The radial electric field at point z (outside the sphere) on
an axis aligned through the circular cap without charge is

E =
ψo

π
∫

dqcosβ
4π ∈o S2 , (9)

where

dq =   2πσr0
2sinψdψ

σ =   q/(2πr0
2(1 + cosψ)) ~ q/4πr0

2

sinβ =   r0sinψ/s
S =   (r0

2 + z2 – 2r0 zcosψ)1/2

and q and r0 are the charge and radius of the toner particle,
respectively. Equation 9 yields

E = q

4π ∈o

1

4roz2 2ro +
(z2 − ro

2 )

S
− S








, (10)

where

S = {(z – r0)2 + 4r0zsin2(ψ0/2)}1/2.
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Figure 2. Geometry for the calculation of the electrostatic field
outside a charged spherical shell having a region without charge
on the z axis that subtends an angle ψo.

If the charge shell is assumed to be closed, that is,
ψo = 0, then the field reduces to the expected result E →
q/(4π∈o,z2). However, if ψo is small but nonzero, the strength
of the field near the surface of the particle is considerably
reduced. This is illustrated in Fig. 3, where Eq. 10 is plot-
ted as a function of the distance from the surface of the
particle. Table II shows how the field strength at the sur-
face depends on the size of the region without charge. Both
Fig. 3 and Table II show that very close to the surface, the
field is approximately 50% of the case of a continuous,
uniform distribution. Moreover, the value is only weakly
influenced by the choice of ψo.

Toner Particle Adjacent to a Dielectric Sphere
Next we examine how this result is modified if the toner

particle is near a dielectric sphere. The toner-carrier in-
terfacial electric field for a spherical toner particle having
a region without surface charge at the point of contact is
examined in Appendix B. There, an analytic expression was
found for a ring of charge near a dielectric sphere. Ideally,
we would like to integrate this solution over the surface of
the toner particle from ψo to π, by analogy to Eq. 9. How-
ever, this is cumbersome, and we have chosen instead to
approximate the integral of the patchy surface distribution
by summing the fields from a number of rings of appropri-
ate diameter and position. Because of the weak dependence
of the interfacial field on ψo outlined in the previous para-
graph, as few as only three rings are sufficient to obtain
reasonable results. Numerical values of the interfacial field
strength f1(l) are given in Table III. The result is similar to
that for the isolated charged toner particle, namely, that the
interfacial field strength is reduced approximately 50% for
the “patchy” surface charge distribution compared with the
continuous case.

To summarize this section, if the field strength at the
surface of a charged, isolated toner particle with a contin-
uous surface charge distribution is one unit, then near a
small region without charge the field is reduced to about
0.5 units. If a dielectric carrier bead is brought close to the
toner particle, the interfacial field approximately doubles
to about 2 units for the continuous surface charge distri-
bution, and approximately doubles to about 1 unit for the
“patchy” case.

Figure 3. Calculated electrostatic field as a function of the dis-
tance z - ro from the surface of a spherical shell of radius ro. The
shell has a small region without charge that subtends an angle
ψo as shown in Fig. 2. The curve labeled ψo = 0 (no missing
charge) is the function ro

2/z2. The surface of the sphere is located
at z = ro. As an example, if z /ro = 1.0001 and ro = 5 µm, then the
distance from the surface is 5 Å.

Table II. Strength of the Electric Field at the Surface of
an Isolated Toner Particle with Charge q and Radius ro*

 Surface area
fraction of the
region without Field strength

ψ0      charge at the surface

0       none       1.0
0.1°      8 × 10–7       0.53
0.5°      2 × 10–5       0.50
1.0°      8 × 10–5       0.50

* The toner particle has a region with no charge that subtends an angle yo.

Table III. Strength of the Interfacial Electric Field f1(1)
between a Toner Particle Having Charge q and Radius
ro, in Contact with a Dielectric Carrier Bead Having Di-
electric Constant 10*

   f1(1) for a “patchy”
f1(1) for a uniform      surface charge
  surface charge             distribution represented

R/ro     distribution by 3 rings of charge

  3         2.00 1.05
10         1.88 0.94
20         1.85 0.91

* The two columns compare the field strength for uniform and
   “patchy” distributions of surface charge on the toner particle.
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When the surface charge distribution on each toner par-
ticle includes a small region without charge at the point of
contact, Eq. 7 for the total interfacial field strength is un-
changed. The value of f1(l) is reduced approximately 50%,
as discussed above and shown in Table III. The values for
the integrals due to the other toner particles are unchanged
because the functions f1(u) and f2(u) are not modified by
the region without charge on the toner surface except when
u ~ 1 very near the pole of the carrier.

Dependence of Interfacial Electric Field on
Toner Surface Charge Distribution and

Number of Toner Particles

We now return to Eq. 8, which predicts how the toner–carrier
interfacial electric field depends on the number of toner
particles. Results of numerical calculations of Eq. 8 are
shown in Fig. 4. Curve a is for the case where each toner
particle has a continuous surface charge distribution, and it
represents the extension of the electrostatic model of Ref.
3 to multiple layers. In this case, the function f1(u) is Eq. 19
of Ref. 3; the function f2(u) is similar, but the distance to
the second charged shell is appropriately adjusted. Curves
b and c show the effects of assumptions about discrete toner
surface charge distributions. Curve b is for toner particles
where the surface charge distribution is represented by 3
rings of charge. Complete expressions for fi(u) were used
in the numerical calculation; Appendix B shows explicit
expressions for f1(1) only. Curve c is for toner particles hav-
ing a cap-shaped region without charge at the point of con-
tact. In this case, the value of f1(l) is 50% of the value used
to calculate Curve a, whereas for u ≠ 1 the values of the
functions fi(u) are the same as those used in Curve a.

Figure 4. Dependence of the calculated toner-carrier interfacial
electrostatic field on the number n of toner particles for the mul-
tilayer model, Eq. 8. The field is in units q/4π∈ro

2. The carrier
dielectric constant is 8 and the ratio R/r0 is 10. Curve a is for
toner particles having a continuous surface charge distribution.
Curve b is for toner particles where the toner surface charge
distribution is represented by 3 rings of charge. Curve c is for
toner particles having a small region without charge at the point
of contact.

From Fig. 4, we note that the value of the interfacial
electric field for the continuous toner surface charge dis-

tribution is quite different from the discrete cases. Second,
the value of the intercept with the abscissa is different by
about a factor of two. Third, the results for the two discrete
surface charge distributions are essentially equivalent de-
spite the fact that the details of the surface charge dis-
tributions are quite different. This is because of the inverse
square dependence of field on distance.

Modified Model for q/m

The modified expression Eq. 8 for the toner-carrier in-
terfacial electric field can now be substituted into the physi-
cal model for q/m. We find

      q / m =
Ao

C + Ωo (C)
1− exp(−t / τ )[ ], (11)

and for n < nmono

Ω0 (C) =
r0ρt

Rρc

f1 1− G1(n){ }
and for n > nmono

Ω0 (C) =
r0ρt

Rρc

f1 1− G1(nmono ) − G2 (n − nmono ){ }

and where n and C are related by n = CM/m, and m and M
are the toner and carrier masses, respectively. For long mix-
ing times, a simplified expression for m/q can be obtained
from Eq. 11 to compare with experimental values:

m / q = 1

Ao

C + Ωo (C)[ ] (12)

Comparison of Physical Model
with Experiment

The physical model for q/m, Eq. 11, was compared with
experimental results by fitting the model to measurements
of m/q plotted versus toner concentration C with one ad-
justable parameter, Ao.

Figure 5 compares the model and experiment for toner
and carrier materials having R/ro = 10 and materials com-
position described by Nash.5 The carrier is an uncoated
nickel ferrite bead with mass density 5.0 g/cc and diameter
equal to 100 µm. The dielectric constant of the ferrite car-
rier material was taken6 to be 8, consistent with values in
the literature for the polarization of bound charge carriers;
it seems reasonable to assume that there are no free charge
carriers in the bulk of the carrier bead. The toner comprises
a copolymer of polystyrene and n-butylmethacrylate,
melt-mixed with 10% loading of a furnace carbon black.
The toner packing factor pf is estimated to be 0.55. Figure
5 shows parametric fits of the physical model with Ao as
the only adjustable variable, calculated using both continu-
ous and discrete toner surface charge distributions. Using
the measured values for the parameters in the expression
for Ωo(C) in Eq. 11, the discrete surface charge distribution
model gives a good fit, much better than the continuous
model. It is not possible to make the continuous model
match the data set for any choice of the fittable parameter
Ao. This observation provides further support for the dis-
crete surface charge distribution model.
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Figure 5. Comparison of the physical model with experimental
measurements of toner q/m for materials having R/r0 = 10. The
physical model has one adjustable parameter, Ao; the fitted value
is 0.63 µC/g. The solid curve is calculated assuming a discrete
toner surface charge distribution. The dashed curve is calculated
for a continuous toner surface charge distribution; it is not pos-
sible to match the data set for any choice of the fittable param-
eter Ao. A monolayer toner coverage is indicated by the vertical
arrow. The bars on the data represent an estimate of the measure-
ment precision of about 1 µC/gm.

Figure 6. Comparison of the physical model with experimental
measurements made by Schein2 of toner q/m for materials having
R/ro = 20. Measurements are shown for three toners having dif-
ferent concentrations of charge control additive. A monolayer
toner coverage is indicated by the vertical arrow.

Figure 6 compares measurements by Schein2 for three
toners, each having different concentrations of a charge
control additive (CCA). The carrier consists of 200 µm di-
ameter steel beads; the ratio of carrier bead to toner par-

ticle size is R/ro = 20. The dielectric constant of the steel
carrier bead is assumed to be > 50, and the mass density is
7.7 g/cc. The toner packing factor is estimated to be 0.6.
Figure 6 shows parametric fits of the discrete toner surface
charge model, with Ao as the only adjustable variable. Mea-
sured values were used for the parameters in the expres-
sion Ωo(C). The fitted values of Ao are plotted versus the
CCA concentration in Figure 7, which suggests that Ao in-
creases monotonically with CCA concentration.

Figure 7. Dependence of the parameter Ao on charge control ad-
ditive concentration. Values are taken from the fitted curves shown
in Fig. 6.

Finally, we compare our model with experiment for
materials for which R/r0 = 5.3. Figure 8 compares the data
and the model prediction with Ao the only adjustable pa-
rameter; its value is 0.58 µC/g. The carrier is a polymer-
coated iron bead with diameter equal to 70 µm, and with
mass density 7.7 g/cc. The dielectric constant was assumed
to be >50. The toner particles were styrene-butadiene resin
melt-mixed with a pigment.

Table IV. Parameters Resulting from Least Squares Fits of
a Straight Line to the Experimental Data from Fig. 5 and
to the Predictions of the Discrete Toner Surface Charge
Model Evaluated at the Same Toner Concentrations

Straight line fit  Straight line fit
Parameter      to data  to model

Coefficient of
   determination, R2       0.992   0.987
Y intercept (g/µC)       0.0231   0.0217
Slope (g/µC) 1.377 ± 0.044   1.341 ± 0.055

The refined model predicts a slightly nonlinear depen-
dence of m/q on toner concentration that agrees with mea-
surements. However, we believe it is very difficult to
discriminate between a straight-line fit to the data and the
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refined model, which has a small amount of curvature. For
example, a linear least squares fit to the data in Fig. 5 gives
a very good result; likewise, a linear least squares fit to the
pseudodata set consisting of the model predictions at cor-
responding toner concentrations also gives a good fit; see
Table IV. Therefore it is difficult to test the model on the
basis of curvature alone.

Figure 8. Comparison of the physical model with experimental
measurements of toner q/m for materials having R/ro = 5.3. The
physical model has one adjustable parameter, Ao; the fitted value
is 0.58 µC/g. A monolayer toner coverage is indicated by the ver-
tical arrow. The bars on the data represent an estimate of the
measurement precision of about 1 µC/gm.

Discussion

A standard assumption of previous investigations of toner
q/m is that the electric field near a toner particle can be
modeled by assuming a uniform, continuous toner surface
charge distribution. The assumption of a uniform continuous
distribution is, of course, electrostatically equivalent to as-
suming that all the charge is located at the center of the
toner particle. However, we have shown that for discrete
charges distributed on the surface, rather than a continuous
distribution, the field very close to or adjacent to the sur-
face is reduced by about 50% in the areas between the
charges. We have characterized the charge-free areas by
the subtended angle and have shown that the interfacial field
is reduced 50%, even if the angle is as small as 0.01°, so
that the effect most certainly occurs for fully charged toner
particles, for which the angle is of order 0.4°.

The electric field part of the physical model was ex-
tended to include multiple toner layers on the carrier bead.
This was done by considering the dependence of the inter-
facial electric field on the charges of the toner particles in
the second layer. This enabled a straightforward extension
of the physical model to toner concentrations exceeding
the value corresponding to a monolayer. The effect of neigh-
boring carrier beads was briefly considered and found to
be small compared with the other considerations.

The physical model with the improved interfacial elec-
tric field was fitted to measurements of the dependence of
m/q on toner concentration with only one adjustable pa-

rameter, Ao. The model provides a framework that links Ao

to the microscopic parameters of the component materials.
From the physical model,3

   Ao = a

s

4πR2

M

∈o

ed
Pjµ j −

j

TS

∑ Piµ i
i

CS

∑











, (13)

where M = 4πρcR3/3 is the carrier mass, a is the micro-
scopic area of contact of asperities between toner and car-
rier beads, s is the area of localized conductivity on the
surface of the toner particle, e is the electronic charge, d is
the electronic tunneling length, Pj and Pi are contact prob-
abilities, µj and µi are the characteristic energy levels of
each of the component materials present on the surfaces of
the toner and carrier beads, and TS and CS refer to sums
over the toner and carrier component materials, respectively.

Using the measured value Ao = –0.63 µC/g determined
from Fig. 5, and assuming d = 10 Å, we find (a /s)(∑Pjµj –
∑Piµi)/e = –5.6 mV. We now briefly examine if this value is
consistent with estimates of the characteristic energies and
contact probabilities of the component materials, and with
estimates of microscopic surface roughness related to the
value of a/s.

In the framework of the physical model, the parameter
s is bounded by two values. The smallest value is equal to
the microscopic area of contact of the asperities, that is, s
= a. The largest value for s is the projected geometric area
of contact. Therefore, the ratio a/s is related to the micro-
scopic surface roughness and contact pressure, although
we have not examined this relationship in detail.

The importance of microscopic surface roughness and
the relation to contact charging has been emphasized by
Coste and Pechery.7 They measured the dependence of the
actual contact area on surface roughness. Using their data
and our estimate that the combined roughness of carrier
and toner surfaces is about 0.5 to 1 µm, we estimate the
ratio of actual to projected geometric contact area to be
about 0.2 for our materials. Coste and Pechery also found
that the relationship between surface charge density and
contact area is, in general, nonlinear; however, it is ap-
proximately linear for values of roughness similar to that
of our materials.

For an uncoated carrier and a toner comprising resin
and carbon black, the term (∑Pjµj – ∑Piµi)/e can be ex-
pressed as Pf µf – {Pcbµcb + (1 - Pcb)µr}, where the subscripts
f, cb, and r refer to the carrier ferrite, toner carbon black,
and toner resin, respectively. Because the carrier is uncoated,
Pf = 1.0. The carbon black concentration in our toner is
10%; therefore Pcb ~ 0.1.

Julien8 reports values of µr = –4.1 eV for polymethyl-
methacrylate and µcb = –4.8 eV for oxidized carbon black.
We have not found a published value for the work function
of ferrite, which is a polycrystalline material comprising
the elements nickel, iron, and oxygen. We have made an
estimate of the ferrite work function, assuming that it is the
average of the work functions deduced from Kelvin poten-
tial measurements of metallic surfaces in vacuum and air—
and presuming that the latter measurements include metal
oxides. Harper9 reports values for the work functions of
nickel and steel relative to gold of 0.35 and 0.45 eV, re-
spectively, and Davies10 reports a value for gold of –4.6 eV.
Consequently, we infer that the ferrite work function is µ f ≈
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–4.2 eV; we emphasize that this is an extrapolation from
the published experimental results.

Combining these estimates, we find (a/s)(∑Pjµj –
∑Piµi)/e ~ –6 mV, which is close to the measured value of
–5.6 mV. We conclude that reasonable agreement between
the measured and modeled values of Ao is obtained if one
includes the effects of the characteristic energies and con-
tact probabilities of the toner and carrier component mate-
rials and the effects of microscopic surface roughness in
the region of contact.

In summary, a refined physical model of q/m was based
on investigation of the toner–carrier interfacial electric field
and its dependence on three contributions; multiple layers
of toner particles on the carrier bead, details of the toner
surface charge distribution, and the surrounding carrier
beads. The effect of the surrounding carrier beads was found
to be small and was therefore neglected. The investigation
of multiple layers of toner on the carrier bead resulted in a
straightforward extension of the model. The discrete na-
ture of the toner surface charge distribution was found to
be important; in particular, the toner–carrier interfacial elec-
tric field must be calculated using a discrete toner surface
charge distribution rather than a continuous one. The con-
tinuous assumption overestimates the interfacial field
strength by almost a factor of two, whereas the discrete
case provides an accurate value and correctly predicts the
dependence of m/q on toner concentration. Finally, we have
shown that there is reasonable numerical agreement between
the measured value of Ao and the value predicted by the
physical model that uses the characteristic energies and frac-
tional area coverages of the component materials.
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Appendix A:
Point Charge Inside a Dielectric Cavity

This appendix summarizes a calculation of the electrostatic
field of a point charge q located at radius ξ = r1 + ro in a
region defined by a spherical cavity in a dielectric material
of radius r3 that contains a dielectric sphere of radius r1.
The dielectric constant of the material is ∈1, and the di-
electric constant of the cavity is ∈2. The geometry, shown
in Fig. A1, is a model for a charged toner particle of radius
ro near a dielectric carrier bead that is surrounded by other
dielectric carrier beads.

The potential in each region can be represented by

φ1 = anrnPn (cosθ )
0

∞

∑

φ2 = q / (4π ∈2 r2 ) + (bnrn + cn / rn +1)Pn (cosθ )
0

∞

∑

φ3 = dnPn (cosθ ) / rn+1,
0

∞

∑
        (A1)

where Pn(cosθ) is the Legendre polynomial of order n.

Figure A1. Geometry for calculation of the electrostatic field at
point P of a charge q located at radius ξ = r1 + r0 in a three-
dimensional space defined by a spherical cavity of radius r3 that
contains a dielectric sphere of radius rl.

The boundary conditions are

at r = r1        

φ1(r1 ) = φ2 (r1 )

∈1 ∂φ1 / ∂r
r1

− ∈2 ∂φ2 / ∂r
r1

= 0

(A2)

at r = r3        

φ2 (r3 ) = φ3 (r3 )

∈2 ∂φ2 / ∂r
r 3

− ∈1 ∂φ3 / ∂r
r 3

= 0.

The term 1/r2 is expanded in Legendre polynomials
according to

1 / r2 = (1 / ξ ) (r / ξ )n Pn (cosθ ) if r < ξ
0

∞

∑

1 / r2 = (ξn / rn +1)Pn (cosθ ) if r > ξ .
0

∞

∑
          (A3)

The solution is obtained by straightforward substitution of
Eqs. A1 and A3 into Eq. A2 and solving for the coefficients
an, bn, cn, and dn. We are particularly interested in the strength
of the electric field at the point of contract of the toner par-
ticle to the dielectric carrier bean, at r = r1. The value of the
field there is

          E = ∂φ2 / ∂r
r 1

(A4)

It is convenient to define a dimensionless function f(u) by
the relation
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       f (u) = (4π ∈o ro
2 / q)∂φ2 / ∂r

r1

, (A5)

where u = cosθ. This function is proportional to the normal
field at the surface of the sphere. For this problem, we  find

f (1) =
ro

2

ξ 2 (r1 / ξ )n−1

n=0
∑ (A6)

+
ro

2

ξ 2
n=0

x

∑

n2 (n +1)(ρ −1)2 (r1 / r3 )2n+1(r1 / ξ )n−1 − n(n +1)(ρ −1)(ρn + n +1)(ξ / r3 )n+2 (r1 / r3 )n−1

(ρn + n +1) n + ρ(n +1){ } − n(n +1)(ρ −1)2 (r1 / r3 )2n+1

−
ro

2

ξ 2
n=0

x

∑

n(n +1)2 (ρ −1)2 (ξ / r3 )n+2 (r1 / r3 )n−1 − n(n +1)(ρ −1){n + ρ(n +1)}(r1 / ξ )n−1

(ρn + n +1) n + ρ(n +1){ } − n(n +1)(ρ −1)2 (r1 / r3 )2n+1

and where ρ = ∈1/∈2 and ξ = r1 + ro as before.
This reduces to the expression for f(1) given by Eq.

B19 of Ref. 3 if r3 → ∞. Numerical values of f(1) calcu-
lated from Eq. A6 are displayed in Table III in the main
text. The summations were continued until the value was
stable in the third decimal place; in some cases this required
over 800 terms.

Appendix B:
Ring of Charge Near a Dielectric Sphere
Used to Approximate a “Patchy” Toner

Charge Distribution

This appendix summarizes a calculation of the electrostatic
field of a ring of charge q and radius b located in a dielec-
tric medium with permittivity ∈2 at position ξ = r1 + a from
a dielectric carrier bead of radius r1 and dielectric constant
∈1. The geometry is shown in Fig. B1.

For a ring of charge in free space, the potential at an
arbitrary point can be found in many texts. Smythe11 gives
the following result:

VR = q

4π ∈o

1

c

r

c






n

Pn (cosα )Pn (cosθ )∑

r < c or θ ≠ α, r = c

VR = q

4π ∈o

1

c

c

r






n+1

Pn (cosα )Pn (cosθ )∑

r > c or θ ≠ α, r = c

where c is the distance from the center of the sphere to a
point on the ring and α is the angle between the z axis and

the vector c. The potential of the ring of charge near a di-
electric sphere can be found by writing the potential in Re-
gion I inside the dielectric sphere (r < r1), and in Region II
outside the dielectric sphere (r > r1),

Φ I = anrnPn (cosθ ), r < r1∑

Φ II = q

4π ∈o

1

c

r

c






n

Pn (cosα )Pn (cosθ )∑

+ (bn / rn+1 )Pn (cosθ ),∑
     (B1)

r1 < r < c or θ ≠ α, r = c

or

       

Φ II = q

4π ∈o

1

c

c

r






n+1

Pn (cosα )Pn (cosθ )∑

+ (bn / rn+1 )Pn (cosθ ),∑
r1 < c < r or θ ≠ α, r = c

The boundary conditions at r = r1 are

Φ I (r1 ) = Φ II (r1 )

∈1
∂Φ I

∂r
r=r 1

=∈2
∂Φ II

∂r
r=r 1

. (B2)

Figure B1. Geometry for calculation of the electrostatic field at
point P for a ring with charge q near a dielectric sphere with
radius r1. The ring has diameter b and is centered at ξ = r1 + a.
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The solution is obtained by substitution of Eqs. B1 into
Eqs. B2 and solving for the coefficients. We are particu-
larly interested in the electric field strength on the surface
of the dielectric carrier bead at the pole. The value of the
field strength, f(1), at the pole of the carrier bead for a ring
of charge is

f (1) =
4π ∈0 ro

2

q n=0

∞

∑ q

4π ∈0

1

c2

r1

c






n−1

•Pn (cosα )
n(2n +1) ∈1

n ∈1 +(n +1) ∈2

.

             (B3)

Figure B2. Geometry for calculation of the electrostatic field at
point P of a nonuniform distribution of surface charge on a spher-
ical toner particle near a dielectric carrier bead. The nonuni-
form toner surface charge distribution is represented in the
illustration by three rings of charge.

A “patchy” surface charge distribution on a toner parti-
cle near a dielectric carrier bead can be approximated by
summing the contributions from several charged rings. The
amount of charge in each ring is proportional to the surface
area of imaginary bands defined in such a way that the rings
are centered in them. The total potential for the particle is
the summation ofthe potentials due to each charged ring.
The location of each ring is specified by the angle αi and
the distance ci. The geometry is shown in Fig. B2. The
strength of the electric field at the pole of the dielectric
carrier bead is

  

f (1) =
4π ∈0 ro

2

q n=0

∞

∑ 1

4π ∈0 k=1
∑ qk

ck
2

r1

ck







n−1

Pn (cosα k )
n(2n +1) ∈1

n ∈1 +(n +1) ∈2

,
         (B4)

where qk is the charge in the k-th band and ∑ qk = q.
We found that three bands (0° to 60°, 60° to 120°, and

120° to 180°) with charged rings centered at 30°, 90°, and
150° and with 25, 50, and 25% of the charge, respectively,
is a good approximation for a charged particle with a miss-
ing region of charge at the point of contact with the carrier
bead. Numerical values of f(1) using Eq. B4 are displayed
in Table III.

Appendix C: Errata for Reference 3

Equations B12, B13, B15, and B21 contain errors. Using
the notation of Ref. 3, the correct expressions are:

large n
lim G(n) → f ' (1)

nf (1)
(B12)

large n
lim 4π ∈0 E → Q

R2 1+ f ' (1)

f (1)2 (r / R)2 (Co / C)2









f (x) = −(y1 − y2 x)r2

(y1
2 + y2

2 ) − (2y1y2 x)[ ]3/2

  (B13)

        
+

Rr2

y2

y1 − Rx2

y2







y1
2 + R4

y2
2 − 2y1R2 x

y2











3/2 − Rr2

y2 y1
2         (B15)

f (1)~1+ ∈−1

∈+1
1+ r

r + R






(B21)

The sentences immediately following Eq. B21 should be
replaced by:

“Compared to Eq. B17, Eq. B21 is identical in the limit
∈ → ∞. Values of f(1) can be found by numerically sum-
ming the series. We find values of 1.71, 2.00, and 2.25 for
R/r = 3 and ∈ = 4, 10, and ∞, respectively; and 1.64, 1.88,
and 2.09 for R/r = 10 with corresponding values of ∈. The
approximate analytic expression above gives values within
1% of these values.”
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